zenithal_perspective-1.1.0¶
The zenithal perspective projection.
Description
Corresponds to the AZP
projection in the FITS WCS standard.
The pixel-to-sky transformation is defined as:
\[\begin{split}\phi &= \arg(-y \cos \gamma, x) \\
\theta &= \left\{\genfrac{}{}{0pt}{}{\psi - \omega}{\psi + \omega + 180^{\circ}}\right.\end{split}\]
where:
\[\begin{split}\psi &= \arg(\rho, 1) \\
\omega &= \sin^{-1}\left(\frac{\rho \mu}{\sqrt{\rho^2 + 1}}\right) \\
\rho &= \frac{R}{\frac{180^{\circ}}{\pi}(\mu + 1) + y \sin \gamma} \\
R &= \sqrt{x^2 + y^2 \cos^2 \gamma}\end{split}\]
And the sky-to-pixel transformation is defined as:
\[\begin{split}x &= R \sin \phi \\
y &= -R \sec \gamma \cos \theta\end{split}\]
where:
\[R = \frac{180^{\circ}}{\pi} \frac{(\mu + 1) \cos \theta}{(\mu + \sin \theta) + \cos \theta \cos \phi \tan \gamma}\]
Invertibility: All ASDF tools are required to provide the inverse of this transform.
Outline
Schema Definitions ¶
This node must validate against all of the following:
This type is an object with the following properties:
mu
number Distance from point of projection to center of sphere in spherical radii.
Default value: 0
gamma
number Look angle, in degrees.
Default value: 0
Original Schema ¶
%YAML 1.1
---
$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/transform/zenithal_perspective-1.1.0"
title: |
The zenithal perspective projection.
description: |
Corresponds to the `AZP` projection in the FITS WCS standard.
The pixel-to-sky transformation is defined as:
$$\phi &= \arg(-y \cos \gamma, x) \\
\theta &= \left\{\genfrac{}{}{0pt}{}{\psi - \omega}{\psi + \omega + 180^{\circ}}\right.$$
where:
$$\psi &= \arg(\rho, 1) \\
\omega &= \sin^{-1}\left(\frac{\rho \mu}{\sqrt{\rho^2 + 1}}\right) \\
\rho &= \frac{R}{\frac{180^{\circ}}{\pi}(\mu + 1) + y \sin \gamma} \\
R &= \sqrt{x^2 + y^2 \cos^2 \gamma}$$
And the sky-to-pixel transformation is defined as:
$$x &= R \sin \phi \\
y &= -R \sec \gamma \cos \theta$$
where:
$$R = \frac{180^{\circ}}{\pi} \frac{(\mu + 1) \cos \theta}{(\mu + \sin \theta) + \cos \theta \cos \phi \tan \gamma}$$
Invertibility: All ASDF tools are required to provide the inverse of
this transform.
allOf:
- $ref: "zenithal-1.1.0"
- type: object
properties:
mu:
type: number
description: |
Distance from point of projection to center of sphere in
spherical radii.
default: 0
gamma:
type: number
description: |
Look angle, in degrees.
default: 0
...