hammer_aitoff-1.2.0¶
Hammer-Aitoff projection.
Description
Corresponds to the AIT
projection in the FITS WCS standard.
The pixel-to-sky transformation is defined as:
\[\begin{split}\phi &= 2 \arg \left(2Z^2 - 1, \frac{\pi}{180^\circ} \frac{Z}{2}x\right) \\
\theta &= \sin^{-1}\left(\frac{\pi}{180^\circ}yZ\right)\end{split}\]
And the sky-to-pixel transformation is defined as:
\[\begin{split}x &= 2 \gamma \cos \theta \sin \frac{\phi}{2} \\
y &= \gamma \sin \theta\end{split}\]
where:
\[\gamma = \frac{180^\circ}{\pi} \sqrt{\frac{2}{1 + \cos \theta \cos(\phi / 2)}}\]
Invertibility: All ASDF tools are required to provide the inverse of this transform.
Outline
Schema Definitions ¶
This node must validate against all of the following:
Original Schema ¶
%YAML 1.1
---
$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/transform/hammer_aitoff-1.2.0"
title: |
Hammer-Aitoff projection.
description: |
Corresponds to the `AIT` projection in the FITS WCS standard.
The pixel-to-sky transformation is defined as:
$$\phi &= 2 \arg \left(2Z^2 - 1, \frac{\pi}{180^\circ} \frac{Z}{2}x\right) \\
\theta &= \sin^{-1}\left(\frac{\pi}{180^\circ}yZ\right)$$
And the sky-to-pixel transformation is defined as:
$$x &= 2 \gamma \cos \theta \sin \frac{\phi}{2} \\
y &= \gamma \sin \theta$$
where:
$$\gamma = \frac{180^\circ}{\pi} \sqrt{\frac{2}{1 + \cos \theta \cos(\phi / 2)}}$$
Invertibility: All ASDF tools are required to provide the inverse of
this transform.
allOf:
- $ref: "pseudocylindrical-1.2.0"
...