molleweide-1.0.0¶
Molleweide’s projection.
Description
Corresponds to the MOL
projection in the FITS WCS standard.
The pixel-to-sky transformation is defined as:
\[\begin{split}\phi &= \frac{\pi x}{2 \sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}} \\
\theta &= \sin^{-1}\left(\frac{1}{90^\circ}\sin^{-1}\left(\frac{\pi}{180^\circ}\frac{y}{\sqrt{2}}\right) + \frac{y}{180^\circ}\sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}\right)\end{split}\]
And the sky-to-pixel transformation is defined as:
\[\begin{split}x &= \frac{2 \sqrt{2}}{\pi} \phi \cos \gamma \\
y &= \sqrt{2} \frac{180^\circ}{\pi} \sin \gamma\end{split}\]
Invertibility: All ASDF tools are required to provide the inverse of this transform.
Outline
Schema Definitions ¶
This node must validate against all of the following:
Original Schema ¶
%YAML 1.1
---
$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/transform/molleweide-1.0.0"
title: |
Molleweide's projection.
description: |
Corresponds to the `MOL` projection in the FITS WCS standard.
The pixel-to-sky transformation is defined as:
$$\phi &= \frac{\pi x}{2 \sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}} \\
\theta &= \sin^{-1}\left(\frac{1}{90^\circ}\sin^{-1}\left(\frac{\pi}{180^\circ}\frac{y}{\sqrt{2}}\right) + \frac{y}{180^\circ}\sqrt{2 - \left(\frac{\pi}{180^\circ}y\right)^2}\right)$$
And the sky-to-pixel transformation is defined as:
$$x &= \frac{2 \sqrt{2}}{\pi} \phi \cos \gamma \\
y &= \sqrt{2} \frac{180^\circ}{\pi} \sin \gamma$$
Invertibility: All ASDF tools are required to provide the inverse of
this transform.
allOf:
- $ref: "pseudocylindrical-1.0.0"
...