parabolic-1.2.0¶
Parabolic projection.
Description
Corresponds to the PAR
projection in the FITS WCS standard.
The pixel-to-sky transformation is defined as:
\[\begin{split}\phi &= \frac{180^\circ}{\pi} \frac{x}{1 - 4(y / 180^\circ)^2} \\
\theta &= 3 \sin^{-1}\left(\frac{y}{180^\circ}\right)\end{split}\]
And the sky-to-pixel transformation is defined as:
\[\begin{split}x &= \phi \left(2\cos\frac{2\theta}{3} - 1\right) \\
y &= 180^\circ \sin \frac{\theta}{3}\end{split}\]
Invertibility: All ASDF tools are required to provide the inverse of this transform.
Outline
Schema Definitions ¶
This node must validate against all of the following:
Original Schema ¶
%YAML 1.1
---
$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/transform/parabolic-1.2.0"
title: |
Parabolic projection.
description: |
Corresponds to the `PAR` projection in the FITS WCS standard.
The pixel-to-sky transformation is defined as:
$$\phi &= \frac{180^\circ}{\pi} \frac{x}{1 - 4(y / 180^\circ)^2} \\
\theta &= 3 \sin^{-1}\left(\frac{y}{180^\circ}\right)$$
And the sky-to-pixel transformation is defined as:
$$x &= \phi \left(2\cos\frac{2\theta}{3} - 1\right) \\
y &= 180^\circ \sin \frac{\theta}{3}$$
Invertibility: All ASDF tools are required to provide the inverse of
this transform.
allOf:
- $ref: "pseudocylindrical-1.2.0"
...