conic_equal_area-1.2.0¶
Alber’s conic equal area projection.
Description
Corresponds to the COE
projection in the FITS WCS standard.
See conic for the definition of the full transformation.
The transformation is defined as:
\[\begin{split}C &= \gamma / 2 \\
R_\theta &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin \theta} \\
Y_0 &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin((\theta_1 + \theta_2)/2)}\end{split}\]
where:
\[\gamma = \sin \theta_1 + \sin \theta_2\]
Invertibility: All ASDF tools are required to provide the inverse of this transform.
Outline
Schema Definitions ¶
This node must validate against all of the following:
Original Schema ¶
%YAML 1.1
---
$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/transform/conic_equal_area-1.2.0"
title: |
Alber's conic equal area projection.
description: |
Corresponds to the `COE` projection in the FITS WCS standard.
See
[conic](ref:schemas/conic-1.2.0)
for the definition of the full transformation.
The transformation is defined as:
$$C &= \gamma / 2 \\
R_\theta &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin \theta} \\
Y_0 &= \frac{180^\circ}{\pi} \frac{2}{\gamma} \sqrt{1 + \sin \theta_1 \sin \theta_2 - \gamma \sin((\theta_1 + \theta_2)/2)}$$
where:
$$\gamma = \sin \theta_1 + \sin \theta_2$$
Invertibility: All ASDF tools are required to provide the inverse of
this transform.
allOf:
- $ref: "conic-1.2.0"
...