conic_orthomorphic-1.2.0¶
Conic orthomorphic projection.
Description
Corresponds to the COO
projection in the FITS WCS standard.
See conic for the definition of the full transformation.
The transformation is defined as:
\[\begin{split}C &= \frac{\ln \left( \frac{\cos\theta_2}{\cos\theta_1} \right)}
{\ln \left[ \frac{\tan\left(\frac{90^\circ-\theta_2}{2}\right)}
{\tan\left(\frac{90^\circ-\theta_1}{2}\right)} \right] } \\
R_\theta &= \psi \left[ \tan \left( \frac{90^\circ - \theta}{2} \right) \right]^C \\
Y_0 &= \psi \left[ \tan \left( \frac{90^\circ - \theta_a}{2} \right) \right]^C\end{split}\]
where:
\[\psi = \frac{180^\circ}{\pi} \frac{\cos \theta}
{C\left[\tan\left(\frac{90^\circ-\theta}{2}\right)\right]^C}\]
Invertibility: All ASDF tools are required to provide the inverse of this transform.
Outline
Schema Definitions ¶
This node must validate against all of the following:
Original Schema ¶
%YAML 1.1
---
$schema: "http://stsci.edu/schemas/yaml-schema/draft-01"
id: "http://stsci.edu/schemas/asdf/transform/conic_orthomorphic-1.2.0"
title: |
Conic orthomorphic projection.
description: |
Corresponds to the `COO` projection in the FITS WCS standard.
See
[conic](ref:schemas/conic-1.2.0)
for the definition of the full transformation.
The transformation is defined as:
$$C &= \frac{\ln \left( \frac{\cos\theta_2}{\cos\theta_1} \right)}
{\ln \left[ \frac{\tan\left(\frac{90^\circ-\theta_2}{2}\right)}
{\tan\left(\frac{90^\circ-\theta_1}{2}\right)} \right] } \\
R_\theta &= \psi \left[ \tan \left( \frac{90^\circ - \theta}{2} \right) \right]^C \\
Y_0 &= \psi \left[ \tan \left( \frac{90^\circ - \theta_a}{2} \right) \right]^C$$
where:
$$\psi = \frac{180^\circ}{\pi} \frac{\cos \theta}
{C\left[\tan\left(\frac{90^\circ-\theta}{2}\right)\right]^C}$$
Invertibility: All ASDF tools are required to provide the inverse of
this transform.
allOf:
- $ref: "conic-1.2.0"
...